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Abstract: Over the last several years, a great amount of research work has been focused on the
development of model predictive control techniques for the indoor climate control of buildings,
but, despite the promising results, this technology is still not adopted by the industry. One of
the main reasons for this is the increased cost associated with the development and calibration
(or identification) of mathematical models of special structure used for predicting future states
of the building. We propose a methodology to overcome this obstacle by replacing these
hand-engineered mathematical models with a thermal simulation model of the building developed
using detailed thermal simulation engines such as EnergyPlus. As designing better controllers
requires interacting with the simulation model, a central part of our methodology is the control
improvement (or optimisation) module, facilitating two simulation-based control improvement
methodologies: one based in multi-criteria decision analysis methods and the other based on
state-space identification of dynamical systems using Gaussian process models and reinforcement
learning. We evaluate the proposed methodology in a set of simulation-based experiments using
the thermal simulation model of a real building located in Portugal. Our results indicate that the
proposed methodology could be a viable alternative to model predictive control-based supervisory
control in buildings.

Keywords: model predictive control in buildings; reinforcement learning; data-driven control;
simulation model; multi-criteria decision analysis; energyplus

Energies 2018, 11, 3376; doi:10.3390/en11123376 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7051-0960
https://orcid.org/0000-0001-9715-0803
https://orcid.org/0000-0002-5639-6783
http://www.mdpi.com/1996-1073/11/12/3376?type=check_update&version=1
http://dx.doi.org/10.3390/en11123376
http://www.mdpi.com/journal/energies


www.manaraa.com

Energies 2018, 11, 3376 2 of 23

1. Introduction

Building Management Systems (BMSs) provide monitoring and control capability for multiple
sub-systems including Heating, Ventilation and Air Conditioning (HVAC). Modern BMSs additionally
offer some energy management functionality based on a set of low-level controllers, such as thermostats.
Up to 20% of the energy used for HVAC and lighting system operation is lost due to poor configuration
of such controllers or due to equipment faults [1]. Even in the case of good controller configurations,
it is very hard to encapsulate efficient control strategies within a static set of simple rules, especially in
large buildings with complex energy or renewable systems installed; here, all generation, distribution
and room-level systems need to operate in a coordinated manner and be able to adapt to stochastic
generation patterns that strongly depend on weather conditions [2].

Recently, this manual configuration and control tuning process has been replaced by a
methodology developed following two axes [2,3]:

• Utilise predictions instead of historical data: Here, instead of gathering and analysing historical
data from the building to improve the efficiency of specific controllers, forecasts (e.g., on
weather, occupancy, equipment gains, etc.) are utilised to determine the (near-)future state
(e.g., thermal/visual comfort conditions) of the building. This can enable for a continuous
adaptation of the control logic to the (predicted) needs of the building and the microclimatic
conditions of each site.

• Automated controller tuning: Here, an optimisation process is defined (utilising the available
predictions) to design efficient controllers in an automated and laborious-free manner.

This approach has been made possible by two key technologies: (i) the application of Model
Predictive Control (MPC) paradigm in buildings (e.g., see [2–14]); and (ii) the development of scalable
BMS, e.g., the Johnson’s Controls METASYS R©, which provide a remote (cloud-based) layer for hosting
computationally demanding services, such as supervisory-level control design.

In MPC application in buildings, typically, we assume that a model of the controlled process
(i.e., the real building in our case) as well as (weather, occupancy, etc.) forecasts for a predefined
time window are available. This way, a constrained optimisation problem can be formulated and
solved for a predefined period in the future, generating a control signal (or control strategy) which is
optimised for the system on the basis of a defined cost function and a set of (visual, thermal, air-quality,
etc.) comfort constraints. The quality of the final control strategy is evaluated under a set of Key
Performance Indicators (KPIs). A high-level schematic of the overall approach is shown in Figure 1.

Despite the fact that MPC for building energy management and indoor climate regulation
has been an active research topic, a plethora of research work has been published in the field and
impressive results in real-world and simulated applications have been reported in relevant projects and
publications, it has really not found its way into the market. Very few companies include some simple
aspects of MPC in their offerings [15,16] and these implementations are far from being fully-fledged
MPC solutions. This hesitation of companies to include MPC in their product lines cannot be only
attributed to conservatism on the side of the industry; some of the mechanics of MPC violate specific
needs of building owners and operators.

One of the biggest obstacles towards market adoption is that MPC requires a model of the
building [2], usually of a very specific linear or bi-linear structure [3,17–21]. In addition, in holistic use
cases, all involved generation and distribution systems need to be modelled too [21,22]—and there
have been only few notable efforts for model standardisation (e.g., see [23,24]).

Model development induces the largest monetary costs in MPC applications [6], but what has
been rather overlooked is that there are several other practical steps towards deploying MPC in a real
building that also yield increased costs:

1. installing additional sensors/meters required for accurate state estimation of the building to
minimise the model/reality mismatch;
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2. configuration of the overall MPC solution (including model calibration) requires significant
amount of time and the involvement of high-qualified engineers; and

3. monitoring and solution debugging times of MPC solutions are significantly higher compared to
the deployment of traditional knowledge-based controllers.

In several cases, the achieved cost savings might not be high enough to achieve a favourable
Return of Investment (ROI) [6].

In addition, as analysed in [2,25], there is a cost (e.g., express as productivity loss [26,27]) associated
with the inability of most MPC-oriented bi-linear models to accurately estimate occupant thermal
sensation, e.g., under the guidelines of ISO 7730 [28] or ASHRAE 55 [29], as most MPC applications in
buildings define room thermal comfort as a pre-defined region of air [30] or operative [3] temperatures
with only few exceptions [31–34]. This limitation becomes more restricting as personalised thermal
comfort models [35–39] have increasingly started becoming the norm.

Figure 1. The model predictive control paradigm for building control optimisation (adapted from [2,3]).

In an effort to overcome these limitations, we propose a methodology that utilises Building
Energy Performance (BEP) simulation models, developed using BEP simulation engines such as
EnergyPlus [40] or Modelica [41] in place of the purpose-built models for MPC. A standardised
automatic creation of BEP simulation models could expedite the BEP simulation modelling process,
making it more cost-effective and less vulnerable to modelling errors. To this direction, the automated
data transformation from Building Information Models (BIM) data to input data of thermal simulation
tools has received considerable attention recently [42–47]. Concerning the BIMs availability, regulatory
requirements and technological advances in the field of building information modelling are resulting
in increased adoption and availability of BIM data. At the same time, BIM-based workflows are
increasingly adopted in professional practice, which has resulted on comprehensive and usable BIM
models’ availability. Hence, adoption of such an automated BEP simulation models’ generation from
BIM data is not far into the future (see [48] and the references therein for a thorough review and
algorithmic implementations).

Even though other model-assisted control design approaches have also used these types of models,
the novelty of our work lies in the methods we define for generating optimised control strategies
through interacting with the model: (i) simulation-based evaluation using multi-criteria decision
analysis methods; and (ii) simulation-based optimisation using Gaussian process state space models.
Our proposed approach combines ideas from multi-criteria decision theory and both the data-driven
control [49–51] and reinforcement learning [52–54] domains and is evaluated as a proof-of-concept
utilising the simulation model of a real building located in Portugal.

The remainder of this paper is structured as follows: Section 2 provides an overview of the MPC
methodology in buildings; Section 3 describes the proposed methodology; Section 4 presents the
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experimental setup and the main results; and Section 5 presents the final conclusions and concrete
next steps towards future work.

2. Model Predictive Control in Buildings

A more formal definition of the MPC formulation can be seen in the following Equation [3,4]:

u∗ = argmin
u∈U

T

∑
t=1

gt(xt, ut, wt)

subject to:

xt+1 = f (xt, ut, wt)

ut ∈ U
xt ∈ X
wt ∈W
C(xt) ≤ 0.

(1)

Here, we have the following:

• t is the discrete time-step (with its length depending on the application), T is the prediction
horizon.

• u∗ := [u1, u2, . . . , uT ] is the optimal control solution.
• xt is a vector of values for each time-step t for the states of the system (e.g., wall and air

temperatures [3]).
• The admissible control actions ut are a vector of values for each time-step t, with each value

corresponding to a control action (e.g., temperature set-point, hot water flow, etc.) for all
controllable systems of the building.

• wt is a vector of exogenous, uncontrollable factors affecting the system, like weather conditions
or user actions. As discussed previously, we have some (reliable) predictions ŵt for these
disturbances.

• U ⊆ Rm and X ⊆ Rn are closed sets defining the admissible controls and states respectively, while
W ⊆ Rv is the closed set of exogenous uncorrelated factors.

• f : R(n+v) ×Rm → Rn is a (possibly non-linear) function that describes the system dynamics.
• gt ∈ R is the value of the cost (or objective) function to be minimised at time t and represents

a performance measure, estimating the efficiency of a given control strategy. In the buildings
domain, this index can either be economical (e.g., minimise operational cost) or environmental
(e.g., maximise the net energy produced or minimise CO2 emissions).

• C(xt) ≤ 0 is a function usually describing thermal comfort constraints for the building occupants.

To account for modelling/prediction errors, only the first control action is applied to the building
and the whole process re-initiates.

Starting from this generic definition, we can distinguish different categories of MPC algorithms
for buildings, depending on the type of model used and the associated optimisation approach for
solving the defined constrained optimisation problem. In the remainder of this section, we provide
a high-level overview of these categories, but a detailed analysis is beyond the scope of this paper.
We refer the interested reader to [2,5] and the references therein for a thorough analysis.

Physics-based models These models are designed based on first principles, utilising knowledge
of the underlying physical process of the building and are usually analogous to electrical
Resistance–Capacitance (RC) networks [3,6,17–21]. In an effort to reduce the model design- and
calibration-associated costs for these models, a number of MPC approaches based on system
identification methods [18,50,51,55–58] have been proposed. The problem here is that some initial
(quasi-)random actions need to be performed to the real building (called persistent excitation
signals in system identification theory) [51,56,59,60] to satisfy key theoretical assumptions on reliable
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statistical identification [55,61]. In real operation, this requirement is almost always infeasible without
compromising the comfort or the health of the occupants (note that this is a problem closely related
to the safe exploration/exploitation dilemma that has been extensively studied in reinforcement
learning [52,53,62,63]). It is conceivable that a poorly identified model can lead to severe compromise
of occupant comfort conditions; the model will provide inaccurate predictions that will lead to
unsuitable controllers [64].

Data-driven models Here, a linear or non-linear regression model is fitted using available data
from the real building and then utilised for the MPC application. Several types of regression functions
have been reported in the literature, e.g. neural networks, support vector regression, autoregressive
moving average, regression trees, etc. (see [5,65] for an overview). These models have the same data
requirements as the system identification methods described before while they also suffer from poor
extrapolation properties.

BEP simulation models When these models are utilised for control design, the main concern is
the optimisation algorithm to be used, as they are characterised by high simulation times. A common
approach is to assume that the simulation model is an exact model of the real building and construct a
surrogate regression model off-line; this model is orders of magnitude faster compared to the original
model so it could be used for MPC-like on-line control design [55,66]. From our experience with
real-building control experiments [2,4,67], the assumption that the original simulation model (and thus
also the surrogate model derived from it) can actually predict all states of the real building, under all
different combinations of weather conditions and occupant actions, usually does not hold in practice.
Instead, what is required is a continuous calibration process, for example as defined in the digital twin
paradigm [68].

A second approach that has been reported to address the sample complexity problem is to
directly replace the (bi-)linear model required in classical MPC with the detailed thermal simulation
model. Early work here [69,70] has used global constrained optimisation approaches (such as genetic
algorithms), but as the number of required simulation calls is quite high (and would grow exponentially
with the number of posed comfort constraints [70]), these algorithms would scale poorly in realistic
building control scenarios.

More recent work in the same direction [2,4,67,71–74] uses the available simulation model to
construct a simple meta-model of the building online, which is able to predict the behavior of the
building only for a limited prediction horizon. This meta-model is used for the optimisation of the
control strategy, in an effort to reduce the number of simulation calls to the “expensive" simulation
model. The problem with most approaches here stems from the multi-objective formulation of the
optimisation algorithm [2,4,71], in which the objective function to be optimised is a properly weighted
combination of a cost function (e.g., the total energy consumption) and a term that expresses the thermal
discomfort for the entire building (in most cases, average discomfort values for all offices are calculated,
in contrast to normative guidelines [28,75]). In large-scale real-world setups, hand-tuning a proper
weighting between the active constraints being generic enough to capture all the real-world variations
(e.g., varying daily weather conditions, occupant actions, etc.) is a formidable task. For example,
in an office building with 30 offices, where thermal and visual comfort constraints need to be met,
minimising the energy consumption of the building while giving priority to thermal over visual
comfort constraints requires: (i) proper normalisation between the energy consumption, the thermal
comfort and visual comfort constraints values so no term is dominating the combined cost function [76];
and (ii) adjusting the relative importance of visual over thermal comfort constraints Finally, constrained
Bayesian optimisation has been used to address these shortcomings [2], but, even though this approach
resulted in a successful real-world application, Bayesian optimisation does not scale well in problems
with a high number of optimisation parameters [77].
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3. The Proposed Approach

Taking into account all the above, in the present work, we define a methodology that builds
upon some of the ideas that enable the great potential of MPC, but at the same time satisfies the
requirements of building owners on reduced cost and more transparent control decisions [78].
To achieve this, in the heart of our methodology lies a set of Building Energy Performance (BEP)
simulation models, developed to use BEP simulation engines such as EnergyPlus or Modelica, instead
of using purpose-built models for every study building.

Here, we utilise the simulation model in an on-line fashion, but we deviate from previous work
by developing and evaluating two simulation-based control improvement/optimisation methods
(analysed in the remainder of this section): (i) simulation-based evaluation using multi-criteria decision
analysis methods; and (ii) simulation-based optimisation using Gaussian process state space models.
The high-level view of the overall methodology—which is similar to the classical MPC work flow—is
shown in Figure 2, where we have the following steps:

1. Design Phase:

• The Control Improvement module evaluates candidate control strategies utilising the
simulation model under a set of pre-defined objectives (e.g., energy consumption, thermal
comfort in each controller space, etc).

• When the Design Phase finishes, the best resulting strategy is communicated and deployed
to the real building.

2. Application Phase:

• The deployed controllers are used to generate new control actions in each control time-step
for each controllable system of the building (possibly also utilising in-building and weather
sensor measurements).

Figure 2. The simulation-based control improvement methodology.
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3.1. Simulation-Based Evaluation Using Multi-Criteria Decision Analysis Methods

One simple way of designing controllers is to adapt the methodology used in [79] for selecting
the best voyage plans in ships in the building control domain. In this work, a module generates a
set of candidate voyage plans from port A to port B and a Multi-Criteria Decision Making (MCDA)
algorithm [80] selects the best route according to a pre-defined set of criteria.

Equivalently, the building management team could provide a list with pre-defined control
strategies (e.g., more or less pre-cooling hours, different room setpoint schedules, different heating
curves for the boiler operation, etc.) along with a list of objectives (called criteria in MCDA literature)
to be optimised (e.g., total energy consumption, monetary cost, thermal and visual comfort, etc.).
In addition, for each objective/criterion, a “preference” value (e.g., a number between 0 and 10) needs
to be provided, expressing the relative “importance” of each criterion. Finally, each control strategy
is evaluated on the available simulation model and based on the different values for each criterion
an MCDA algorithm returns a ranking for each control strategy and the highest-ranking control is
applied to the building. The overall methodology is shown in Figure 3.

The main advantage of MCDA methodologies is that in problems where multiple criteria have to
be taken into account, the solution they provide is not solely a mathematical outcome, but also reflects
the preferences and priorities of the decision makers, as indicated by their preferences. Following
the work of [79], we have selected the PROMETHEE (Preference Ranking Organisation Method for
Enrichment Evaluation) II methodology [81–83] as the main MCDA algorithm, which is a widely-used
method based on pairwise comparisons of the different scenarios (control strategies in our case) to
be evaluated.

To apply PROMETHEE II one has to define the set of alternative control strategies to be ranked,
the set of objectives/criteria to be used for the ranking, as well as weights reflecting the preferences and
priorities of the building management team with respect to the criteria. Based on these, a multi-criteria
table is created, which includes the evaluation of each alternative control strategy against each
considered criterion and a preference function is defined for each criterion that reflects the preference
of an action from another according to this criterion. In PROMETHEE II, there are six preference
functions for pairwise comparison of alternative scenarios; here, we use the Gaussian criterion since it
is more robust and requires less fine-tuning (see [79] for more details):

Pp(Si, Sj) =


0, if cp(Si) ≤ cp(Sj)

1− exp
− (

cp(Si)−cp(Sj))
2

2σ2
p , otherwise

Here, p is the evaluation criterion, Pp(Si, Sj) is the preference of control strategy Si over an
alternative control strategy Sj on the specific criterion, cp(Si) and cp(Sj) are the evaluations of
the alternatives Si and Sj for the given criterion and σp is a threshold that define the shape of the
corresponding preference function.

Subsequently, an aggregated preference index pr(Si, Sj), expressing the overall preference of the
one alternative over the other, is calculated for each pair of alternative actions (Si, Sj) as follows:

pr(Si, Sj) =
N

∑
p=1

wpPp(Si, Sj) (2)

with N the total number of considered criteria and wp the weight of each of them. This result is then
used to define two additional indices for each alternative control strategy:

• The positive outranking flow φ+(Si) = ∑Sj

pr(Si ,Sj)
N−1 expresses the degree to which a control

strategy Si is preferred over all the other control strategies Sj.

• The negative outranking flow φ−(Si) = ∑Sj

pr(Sj ,Si)
N−1 expresses the degree to which all the other

control strategies Sj are preferred over this specific one.
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The difference φ+(Si)− φ−(Si) is the net outranking flow φ(Si), which reflects the final utility of
the control strategy Si, and is used to rank the alternatives. Finally, the best control strategy (the one
having the highest net outranking flow) is applied to the building.

Figure 3. Overview of simulation-based evaluation of building control strategies using multi-criteria
decision analysis methods.

3.2. Simulation-Based Optimisation Using Gaussian Process State Space Models

In contrast to the MCDA-based approach analysed in the previous section, here, we illustrate an
optimisation-based solution to the control design problem. The main difference is that we no longer
use static control strategies as input and rank them, but we design a new control strategy suitable for
the building control problem at hand by interacting dynamically with the available simulation model.

As the simulation time of the building simulation model can be a significant bottleneck, the defined
optimisation approach needs to be data efficient to facilitate a small number of simulation calls.
This (usually) implies that we need to trade-off optimality of the solution for time-efficiency;
the discovered locally optimal solution can still be significantly better compared to a set of static
rules consisting of the baseline control in most buildings [2,4,67].

For our solution, we build upon recent advances in model-based reinforcement learning [53,62]
and data-driven control [50,51,84]. These approaches use non-parametric models (Gaussian Processes
(GPs) for regression [85]) to train a regression model that will mimic the dynamics of the controlled
system (i.e., the building in our case). Then, an optimisation algorithm utilises the learned model and
the controller discovered is applied in the real system. After each run in the real system, the available
data are augmented with new data from the latest run and the model is re-trained. The main property
of these methods is that they have exhibited unprecedented data efficiency compared to previous methods [62],
which in our case implies that we can minimise the number of simulation calls to the model. GPs are
non-parametric regression models [85,86] and as such they do not require an a priori fixed model
structure (for example, the degree of polynomial regression functions). This property implies that the
same regression model can be used “as-is” regardless of differences in the properties of the building or
the HVAC system.

A GP (GP(m(x), k(x, x′))) is a collection of random variables, any finite number of which has a
joint Gaussian distribution. As stated in [87], it is similar to a function, but instead of returning a scalar
f (x) for every x, it returns the mean and variance of a normal distribution over the possible values of
f at x.
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If we have l training samples [(x1, y1), . . . , (xl , yl)] ∈ D with x ∈ Rn and y ∈ R and zero mean
function, we can sample from the prior by sampling values from the multivariate normal distribution
N (0, K) at x1:l to generate pairs x1:l , f(x1:l). The covariance matrix (or kernel) K is given by [87]:

K =

 k(x1, x1), . . . , k(x1, xl)
...

. . .
...

k(xl , x1), . . . , k(xl , xl)

 . (3)

Now, if we want to predict the value of a new point xl+1, then f(x1:l) and f (xl+1) are jointly
Gaussian: [

f(x1:l)

f (xl+1)

]
∼ N

(
0,

[
K k
kT k(xl+1, xl+1)

])
,

k = [k(xl+1, x1), . . . , k(xl+1, xl)].

(4)

Thus, the predictive distribution is the following:

P ( f (xl+1)|D, xl+1) = N
(

µl(xl+1), σ2
l (xl+1)

)
,

µl(xl+1) = kTK−1 f (x1:l)

σ2
l (xl+1) = k(xl+1, xl+1)− kTK−1k.

(5)

The choice of kernel determines the smoothness properties of the underlying function.
Even though there is a plethora of kernels available [85] (and it is even possible to design new
kernels by combining existing ones [88]), the most commonly used are the following:

• The Squared Exponential (SE) covariance function, defined as:

kSE(x, x′) = exp
(
−||x− x′||2

2d2

)
, (6)

where d a hyperparameter that controls the width of the kernel.
• The Rational Quadratic (RQ), defined as:

kRQ(x, x′) =
(

1 +
||x− x′||2

2ad2

)−a

, (7)

with d, a > 0 the hyperparameters.
• The Matérn covariance functions, defined as follows:

kMatern(x, x′) =
21−ν

Γ(ν)

(√
2ν||x− x′||

d

)ν

Hν

(√
2ν||x− x′||

d

)
, (8)

with ν, d > 0 the hyperparameters and Γ(ν) and Hν the Gamma and Bessel functions of order ν,
respectively.

Using GPs, we can identify a dynamical model of the simulated building [84] and re-formulate
the constrained optimisation setup of Equation (1) as follows:
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u∗ = argmin
u∈U

T

∑
t=1

gt(x̂t, ut, ŵt)

subject to:[
x̂t+1

σ̂t+1

]
= GP(x̂t, ut, ŵt)

ut ∈ U
x̂t ∈ X
ŵt ∈W
C(x̂t) ≤ 0

‖s‖∞ ≤ ε.

(9)

Here, we have the following:

• t, u∗, ut, U, X, W, gt and C(·) have the same definitions as in Equation (1).
• ŵt is a vector of available (weather, occupancy, etc.) predictions.
• x̂0 is provided by the simulator.
• GP represents a set of GPs that provide an estimate of the states x̂t+1 at time t + 1, taking into

account the states x̂t, exogenous predictions ŵt and applied actions ut at time t.
• s := [σ1, σ2, . . . , σT ] is a vector containing the prediction variance in all time-steps t.
• ε is a design parameter. By requiring ‖s‖∞ ≤ ε, we can implicitly allow for more or less

exploration in the optimisation algorithm (i.e., favouring or not control actions that lead to
“uncertain” states), simply by changing the value of ε.

To summarise, the simulation-based optimisation algorithm using GPs (called GP_SS in short in
the remaining of the text) consists of the following steps:

1. An initial set of random simulations is performed in the detailed thermal simulation model. Note
that, since we are operating in the simulation world, we can safely explore random or drastic
actions with no effect to the real-building occupants.

2. A set of GPs is trained using the simulated state, action and disturbance data.
3. A constrained local optimisation algorithm is tasked to solve the constrained optimisation problem

defined in Equation (9), utilising the GP models for evaluating the effect of different control
parameters through rollouts, as shown in Figure 4.

4. The best parameters discovered are simulated in the “expensive” thermal simulation model and
the GPs are re-trained in a new dataset augmented with the most recent simulation data.

5. The process re-iterates until convergence or a time-out occurs.

Figure 4. An off-line trajectory rollout using the identified GP state-space model.

3.3. Closed-Loop Control Extension

We have to emphasise here that, following the work in [2,4], the optimised control strategies are
not necessarily time-series of setpoints to be applied to the actuators; they can be optimised parameters
of the knowledge-based controllers already deployed in the building. For example, if the supply water
temperature of a radiant system is regulated using a heating curve with the external temperature as
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input, then the optimised controller of the proposed methodology would be a new heating curve,
adapted, e.g., to the weather predictions of the following day. In this case, we would define a set of
feedback parametric controllers in Equation (9) as follows:

ut = π(θ; x̂t, ŵt), (10)

with θ ∈ RL the vector of control parameters to be optimised instead of u.
This extension, apart from reducing the complexity of the problem (as usually the number of

parameters would be much lower compared to the time-series controllers of the open loop solution),
would also address a long standing requirement of building managers for more transparency and
“explainability” of deployed control solutions [78]—a requirement that still cannot be fulfilled by any
MPC-like control solution, despite some relevant research efforts in this direction [89–91].

4. Experiments and Results

4.1. The Example Building

As a running example, one of the MOEEBIUS project buildings was used: the Mafra City Hall
in the northwest of Lisbon District (Portugal) shown in Figure 5. It is a four stories building (three
over ground and one semi-exposed basement), which sums around 4800 m2, with its main façade west
oriented, with large openings and a central atrium. It houses about 200 permanent staff and about
50 visitors per day, including the mayor’s office and administrative spaces. Electricity is used as energy
carrier to cover all buildings’ needs (more information about the specific building as well as the other
MOEEBIUS Project buildings can be found in the project website: www.moeebius.eu).

A simulation model of the building was created using EnergyPlus. The architectural plans and
material properties of walls and glazings were gathered from the municipality. The 3D geometrical
modelling and the thermal properties definition (roof, floors/ceilings, external walls, internal walls,
openings, etc.) were carried out using DesignBuilder (v4.7.0.027, Design-Builder Software Ltd.,
Gloucestershire, UK) [92], from which the first version of EnergyPlus Input Data File (IDF) was
exported. The building is located on a top of a hill, so the surrounding ground was included in the
model, but any effect of shading by neighbourhood constructions is neglectable. Once exported to
EnergyPlus, the model was enriched with zone and activity modelling (activity schedules, occupancy
densities, metabolic rates, equipment internal gains and thermal comfort and internal air quality
setpoints) and the simulation time-step was set to 10-min intervals.

In the last step, the thermal/electrical loads and distributed generation systems existing in the
building were introduced into the model. Here, as the HVAC system represents the main load of
the building, special attention was paid to include a reliable model, reproducing the typology and
topology of the building’s actual systems. The heating and cooling demand of the building is covered
by 13 Variable Refrigerant Flow (VRF) centralised systems that can provide heating and cooling
simultaneously according to the specific needs of each of the spaces of the building. Each of the VRF
systems is formed by an external unit, connected to several internal units deployed at zone level
that can provide independent temperature control to each of the conditioned rooms. Technically,
a VRF system is an Air-Conditioning (AC) system, consisting of one external and several space-level
terminal units, which operates by varying the refrigerant flow rate, using variable speed compressors
(in the external units) and electronic expansion valves (in the space-level terminal units), to meet the
heating and/or cooling demands of the building. The ventilation system of the building is formed
by several independent supply and exhaust fans, connected respectively to supply and exhaust duct
networks, enabling internal air renewal, however not providing exhaust air heat recovery functionality.
All of them operate according to constant air volume control strategies. Concerning the Domestic
Hot Water (DHW), small electrical domestic water heaters are installed in specific zones (e.g., cafe
and restrooms), due to low DHW demands at these areas. Finally, the thermal/electrical loads related

www.moeebius.eu
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to indoor lighting, cafeteria appliances and offices/IT equipment were introduced into the model
according to their specification data-sheets.

Occupant thermal comfort was evaluated using the Fanger predicted mean vote PMV
index—following relevant standards [28]—which predicts the thermal sensation of a large group
of people on a seven-point scale from too cold (−3) to too hot (+3). For the PMV estimation in our
simulation model, constant values of metabolic rate (108 W/person corresponding to light-office
activities), clothing level (0.5 clo) and in-space air velocity (0.137 m/s) were considered. Note here that,
instead of using the Fanger index, any personalised thermal comfort model [35–39] can be seamlessly
integrated in the overall methodology; the only change will be in the thermal discomfort calculation
methodology.

(a)

(b)

(c) (d)
Figure 5. The Mafra City Hall Building: (a) front view of the Mafra City Hall Building; (b) simulation
of Mafra City Hall Building using DesignBuilder Software [92]; (c) the Mafra City Hall Building cut-off;
and (d) the Mafra City Hall Building floor-plan.

4.2. The Experimental Setup

As a proof-of-concept, we illustrate our methodology in simulation (i.e., we demonstrate only the
upper part of Figure 2), by a one-day control design experiment using both the MCDA and GP_SS
approaches. The simulation day was 1 (July 1st – a hot Summer day) and we utilised a Meteonorm
weather file [93] for Lisbon, Portugal.

For our experiment, we focused on VRF5 control, which serves Rooms 21, 22, 87 and 88. Rooms
21 and 87 have seven occupants each and Rooms 22 and 88 have only one. The occupants were
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assumed to enter the building at 08:15 in the morning and exit at 17:15 in the afternoon. Our task was
to minimise the total energy consumption measured at the VRF unit while maintaining comfortable
interiors in all related rooms. We used an open-loop supervisory controller consisting of nine setpoint
values to be applied on every occupied hour (08:00–17:00); all the necessary low-level control logic for
the setpoint tracking were defined in the EnergyPlus model developed. Note that we did not use a
different setpoint for each room but rather defined an HVAC zone where the controller of all rooms
included is the same. This is a standard practice for control complexity reduction in buildings both in
industry and in research applications (e.g., see [94–96] and the references therein).

We have to emphasise here that, even though the control setpoint was the same for all rooms,
the thermal comfort evaluation of the generated control solution was performed in each controlled
room separately. Following the relevant standards [28,29], we used the Fanger index for thermal
comfort evaluation and required that the Fanger PMV value in each office is within (−0.5,+0.5) in all
time-steps. In each time-step t and for each room i, we defined the following comfort constraint:

ci
t =


0, if − 0.5 ≤ PMVi

t ≤ +0.5
10 ∗ (PMVi

t + 0.5)2, if PMVi
t < −0.5

10 ∗ (PMVi
t − 0.5)2, if PMVi

t > +0.5
(11)

Summarising, in connection with the classical MPC setup (Equation (1)), we had the following setup:

• The building is controlled only during the occupancy period (08:00–17:00).
• The control actions are hourly setpoints, which are the same for the four control offices. Thus,

the control time-step is one hour.
• The thermal comfort constraints are defined according to Fanger PMV index and are posed as

illustrated in Equation (11).
• The (predicted) exogenous factors in our case are the weather conditions (provided by the weather

file) and the occupancy patterns (which are assumed fixed and known in advance).
• Since we consider that the predictions for the disturbances are accurate, there is no need to

re-design our control strategy at each control time-step (i.e., every hour), so for the work
presented here we design the entire control strategy once for the entire day. Of course, in future
application in the real building frequent control, (re-)design will be required to compensate for all
unpredicted disturbances.

• The evolution of the system dynamics is provided by the EnergyPlus simulator; as described
earlier we do not have access to the internal equations of the simulator but we can only observe
the input-output relationship.

• The objective/cost function to be minimised is the total energy consumption measured at the
VRF5 unit, which serves the four controllable offices.

To evaluate the quality and efficiency of the improved control strategies under the MCDA and
GP_SS experiments, we defined a simple Rule-Based (RB) controller of the building, which maintained
a constant setpoint for all offices throughout the day. This setpoint was defined at 24.5 ◦C, after a set of
test simulations with different setpoints and consultation of the relevant thermal comfort standards [28].
The performance of the Rule-Based controller can be seen in Figure 6a.

4.3. The Software Framework

For the simulation study presented here, we defined a co-simulation setup. Both the MCDA
and GP_SS approaches were implemented in Python and, in each iteration of the applied algorithm,
a controller (i.e., the setpoint values in our case) was evaluated in the EnergyPlus simulation model.
The control logic (i.e., applying the first control action at 08:00 and the subsequent setpoints every 1 h)
was implemented in Matlab and in each simulation time-step a control action was communicated
from Matlab to EnergyPlus. EnergyPlus simulated the building dynamics for the following time-step
and the building states and weather conditions for this time-step were communicated back in Matlab.
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This process repeated until the end of the simulation period (one day for our experiment here) and
the results were communicated back to the Control Optimisation algorithm for further processing.
The coupling between Matlab and EnergyPlus was achieved using the Building Controls Virtual
Test Bed (BCVTB) co-simulation software (v8.6, Lawrence Berkeley National Laboratory, Cyclotron
Rd, Berkeley, CA, USA) [97]. For all the experiments, we used a MacBook Pro laptop, equipped
with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM and we did not use any form of parallel
computation. For the GP_SS implementation, we used the GPy library [98] for the Gaussian Process
definition and the Sequential Least Squares Programming (SLSQP) algorithm [99] of the pyOpt Python
library [100] for the constrained optimisation setup.

4.4. Results

4.4.1. Approach Using Multi-Criteria Decision Analysis

For the MCDA approach, we ran 12 simulations where the controller was a static setpoint
throughout the day, similar to the rule-based controller. Here, we tried all setpoint values from 21.5 ◦C
to 27 ◦C and we incremented the setpoint by 0.5 ◦C in each simulation. The results for each controller
are shown in Table 1.

To illustrate the behaviour and performance of the MCDA approach, we implemented a series
of experiments with different weights in the criteria, with the criteria being the energy consumption
and thermal comfort violations shown in Table 1. The weights can take numbers from 0 to 10, with 0
meaning that this criterion is not important and 10 meaning that it is quite important (note that the
weights of all the criteria do not need to add to 10. We are not trying to achieve a relevant weighting).
Note that we assigned the same weight in all thermal comfort violations, since it is rare in real world
applications that we prefer comfort in one room over another. Thus, we represented the importance
of energy savings with the value of w1 and the importance of thermal comfort with the value of w2.
The different weighting configurations (shown in Table 1) are the following:

1. Weights: w1 = 10 and w2 = 0.

• Reasoning: This is a weighting combination that gives priority to the energy consumption.
• Result: The ranking of the strategies from PROMETHEE II algorithm is as expected, since the

algorithm prioritises the solutions taking into account only the energy consumption criterion.
2. Weights: w1 = 0 and w2 = 10.

• Reasoning: This is a weighting combination that gives priority to the thermal comfort
conditions in the building.

• Result: The algorithm favours solutions that maintain comfortable interiors, but the highest
ranking controller is the one with the minimum consumption among all the controllers that
achieve comfort. This is one of the properties of the algorithm: even though we indicated
that the energy consumption has no priority for us, the fact that this criterion needs to be
minimised too leads to this sorting.
We have to note here that, even though Strategy #9 leads to limited discomfort, it is not
among the high-ranking strategies. This is due to the high priority given to the comfort
criterion, which results into treating the constraint violations as hard constraints.

3. Weights: w1 = 5 and w2 = 5.

• Reasoning: This is a weighting combination that gives equal priority to both criteria.
• Result: Here, the comfort violations are treated as soft constraints and the ranking of

strategies is quite balanced, but the highest ranking strategy determined by the algorithm
(Strategy #10) leads to significant discomfort in Office 87.

Concluding, for a fair comparison both with the baseline controller and the GP_SS solution,
we have selected Strategy #9 (i.e., setpoint at 25.5 ◦C, shown in Figure 6b) as the “best one”, which
results in 25% savings compared to the rule-based controller.
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Table 1. The evaluation of different control strategies in the simulation model. Here, the thermal
comfort constrained violations are calculated using Equation (11) for the entire occupied period.

Strategy Setpoint Energy Thermal Comfort MCDA Results
Index Value Consumption Constraint Violation w1 = 10 w1 = 0 w1 = 5

( ◦C) (kWh) R21 R22 R87 R88 w2 = 0 w2 = 10 w2 = 5

1 21.5 163.1 0.3 0.9 0.5 11.8 12 8 10
2 22.0 157.9 0.1 0.5 0.1 4.9 11 7 9
3 22.5 152.5 0.0 0.1 0.0 0.8 10 6 8
4 23.0 146.9 0.0 0.0 0.0 0.0 9 5 7
5 23.5 137.3 0.0 0.0 0.0 0.0 8 4 6
6 24.0 122.2 0.0 0.0 0.0 0.0 7 9 5
7 24.5 107.5 0.0 0.0 0.0 0.0 6 3 4
8 25.0 93.5 0.0 0.0 0.0 0.0 5 10 3
9 25.5 79.8 0.0 0.0 0.01 0.0 4 2 11

10 26.0 67.5 0.1 0.2 1.0 0.0 3 1 2
11 26.5 57.7 2.1 2.7 4.9 0.0 2 11 1
12 27.0 48.9 6.6 8.1 11.3 0.1 1 12 12

4.4.2. Approach Using Gaussian Process State Space Models

Here, we ran 20 simulations with random control actions and used the collected data for the initial
training of the GP Regression model. For the training, we defined the following input features and
target values (see also Figure 4) at time t:

1. Input Features:

• ŵ1
t : Outdoor Air Temperature

• ŵ2
t : Global Solar Radiation in the Horizontal plane

• x̂1−4
t : Indoor Air Temperature of the four controlled rooms

• x̂5−8
t : Indoor Relative Humidity of the four controlled rooms

• x̂9−12
t : Fanger PMV value of the four controlled rooms

• x̂13
t : Energy consumption of VRF5 in the time-interval (t− 1, t)

• ut: the control setpoint

2. Target values: all states at time-step t + 1, i.e., x̂1−13
t+1 .

Note that, even though we refer to the GP approximation as “GP model”, we defined 13 GP
regressors—one for each target variable. When the model is trained, we utilise it for defining and
solving the constrained optimisation problem of Equation (9) offline. Once the optimisation process
finishes, the new controller is evaluated in the simulation model, the GP training data are augmented
with the outcome of the new iteration and the process is repeated.

The resulting controller after five simulation/optimisation steps is shown in Figure 6c. The entire
process (20 initial simulations + 5 simulation and optimisation steps) requires 90 min in our hardware
configuration and leads to 32.9% energy improvement compared to the baseline controller and 9.5%
compared to the “best” MCDA controller (see Table 2 for the consumption values, by allowing a small
amount of discomfort in Room 87 only (0.2 as an absolute value calculated using Equation (11)).

As can be seen in Figure 6, these increased savings are due to the initial performance of the
baseline controller. Here, the setpoint applied (24.5 ◦C) maintains the Fanger PMV values close to zero,
being “unaware" constrained relaxation for PMV (−0.5,+0.5). The GP_SS and MCDA approaches
on the other hand are capable of exploiting the trade-off between energy consumption and thermal
comfort and discover control strategies that maintain PMV values close to the high bound of the
constraint, thus saving energy. Another interesting observation is that there is not much variability to
the control setpoints of the best control solution designed by the GP_SS approach. This is because the
cooling system is air-based and capable of covering the cooling demand, so there are no time-delay
effects, as we see in buildings equipped with systems such as radiators [4,25] or Thermally Activated



www.manaraa.com

Energies 2018, 11, 3376 16 of 23

Building Slabs (TABS) [2,25]. This would imply that only for this HVAC system a more targeted
setpoint/control parameter search for the MCDA approach could lead to the same results as the
fully-fledged optimisation methodology followed in GP_SS approach. Alternatively, an optimisation
problem with only one parameter (i.e., a constant setpoint for the entire day) could also lead to an
improved control strategy compared to the baseline controller.

(a)

(b)

(c)

Figure 6. The experimental results for the controlled/occupied period within one simulation day:
(a) the performance of the simple rule-based controller with the setpoint 24.5 ◦C; (b) he performance of
the best controller ranked by the MCDA method with the setpoint 25.5 ◦C; and (c) the performance
of the optimised controller discovered by the GP_SS method with the setpoint varying per timestep,
attaining values between 25.4 ◦C and 26.1 ◦C.
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Table 2. Energy consumption of VRF5 under the different control approaches.

Energy Consumption RB Energy Consumption MCDA Energy Consumption GP_SS
(kWh) (kWh) GPSS (kWh)

107.5 79.8 72.1

5. Conclusions

In the work presented here, we defined and evaluated a model-assisted control optimisation
methodology in buildings that is able to overcome the modelling cost problem of traditional MPC
methodologies by replacing the mathematical model required in MPC with a detailed thermal
simulation model of the building. A central part of our methodology is the control improvement
(or optimisation) module, facilitating two simulation-based control improvement methodologies: one
based in multi-criteria decision analysis methods and the other based on state-space identification
of dynamical systems using Gaussian process models and model-based reinforcement learning.
We evaluated both methods in a simulation study utilising an existing building in Portugal and
we verified that they can generate more efficient controllers compared to a baseline control strategy,
utilising only a small number of simulation calls.

More specifically, as indicated by our experiments, the flexibility of the GP_SS methodology to
define different control setpoints in each control time-step can lead to more efficient control strategies.
Here, including the thermal comfort bounds as constraints in the optimisation problem allows the
algorithm to discover a good trade-off between thermal comfort conditions and energy consumption.
Of course, the discovered controller does not correspond to the global optimal solution, but still is
more efficient compared to the baseline control strategy.

The main benefit of the MCDA approach on the other hand is its simplicity and its negligible
computational overhead. Despite this, it is almost impossible to define a set of meaningful and comfort
preserving control strategies a priori for all types of buildings and controlled systems—some kind of
control improvement or fine-tuning will always be required. In addition, we have seen that the method
is particularly sensitive to the selection of the criteria weighting; here, the decision maker might need
to actively take part in the final control strategy selection (e.g., by manually selecting one of the top N
control strategies and not necessarily the highest ranked one).

We have to acknowledge that, for large buildings with centralised HVAC systems, the proposed
approach might not scale. In the work presented here, we controlled only one of the 13 VRF units of
the building, which implies that, if an online control design solution were required, we would need
to run 13 control optimisation processes in parallel—a configuration that increases the computing
infrastructure requirements and thus the associated cost. In addition, in the case of buildings with
centralised control systems, the number of controlled parameters would be significantly higher, which
would lead to a much harder constrained optimisation problem that would necessitate a higher number
of simulation calls.

Of course, one could address this problem by utilising various simulation speed-up/simplification
techniques reported in the literature (e.g., see [94–96] and the references therein), but still in the general
case the posed constrained optimisation problem might be too large for this method. Another option
would be to formulate the problem as a Reinforcement Learning setup and take advantage of recent
advances in deep reinforcement learning research [101–103] combined with simulation to reality
control transfer approaches [104,105] to mitigate the computationally complex problem of control
design in the off-line phase.

Finally, as an immediate next step, we plan to apply the proposed methodology in the same real
building in Portugal within the MOEEBIUS H2020 European Project, in an effort to evaluate the effect
inaccurate predictions and user actions potentially have in the efficiency of our methodology.
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